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Threshold voltage of the Freedericksz transition in a 
hexatic smectic I phase? 

by P. SCHILLER", G. PELZL and C. CAMARA 
Institut fur Physikalische Chemie, Muhlpforte 1, 06108 Halle/S., Germany 

(Received 18 September 1994: inJinul form 4 Januav 1995; urcepted 16 Junuary 1995) 

Using the linearized equations of the elastic continuum theory, simple formulae for the threshold 
voltage for the Freedericksz transition in planar films of the hexatic smectic I phase are derived. 
In contrast to the Freedericksz transition of a nematic film, this threshold strongly depends on 
the film thickness. The behaviour of the film in the weakly non-linear region slightly above the 
threshold is also considered to characterize the film instability. 

1. Introduction 
Most investigations of the Freedericksz transition refer 

to thin films of nematic liquid crystals [l]. Applying an 
electric field to a suitably prepared planar or homeotropic 
film, elastic distortions appear for a voltage above acertain 
threshold value. It was found both experimentally and 
theoretically that the threshold voltage does not depend on 
the film thickness. Freedericksz transitions also occur in 
films of smectic C liquid crystals [ 2 ] .  Although the 
threshold condition for the instability turns out to be more 
complicated due to the occurrence of discontinuous 
transitions [3,4], the conventional elastic theory predicts 
that threshold voltages should not depend on the sample 
thickness. 

Tilted hexatic liquid crystals, however, which exhibit a 
bond orientational order [5] ,  are expected to behave in 
a different manner. Recently, Gingras [6] has performed 
numerical calculations for a smectic I liquid crystal film 
subjected to a magnetic field. It was found that the 
threshold behaviour is rather complicated for a hexatic 
film with smectic layers oriented parallel to the substrates. 
Besides the continuous Freedericksz transition, another 
transition mainly caused by a reorientation of the bonds 
was also detected. 

In this paper, the threshold of the film instability for 
planar films of the hexatic smectic I phase is obtained 
analytically by performing a linear stability analysis. An 
investigation of the weakly non-linear region just above 
the threshold voltage is added in order to decide whether 
the Freedericksz transition is continuous or discontinuous. 

Figure 1 depicts the molecular ordering in the layers of 
a smectic I liquid crystal. Although the triangular lattice 

* Author for correspondence. 
t Dedicated to Professor A. Saupe on the occasion of his 70th 

birthday. 

in the smectic layers is molten, a long-range bond 
orientational order still exists. This order is associated with 
the orientation of the lines connecting the centres of 
gravity of neighbouring molecules. That means that the 
local hexagon formed by the six nearest neighbours of a 
particle is oriented macroscopically in an undisturbed 
sample. If distortions occur, the hexagon can be rotated by 
an angle y. The preferred direction of the molecular long 
axes (director n) and the normal to the smectic layers 
enclose a fixed polar angle 8, so that the director projection 
on the layer plane is oriented towards a vertex of 
the hexagon. Director rotations due to distortions in the 
sample are defined by the azimuthal angle 4. In figure 2, 
the director angle cj5 and the bond angle g characterize 
deviations from the perfect planar alignment of a smectic 
I film confined between two boundary plates. Supposing 
a strong anchoring of the director and the bond direction, 
the angle 4 and y are equal to zero at the substrates. 
The direction of the smectic layers is not necessarily 
parallel to the film normal, but can enclose a non-zero 

Figure 1.  Degrees of freedom necessary to describe the 
dibtortions in a hexatic smectic I phase 171. The coordinate 
axes p and 5 are parallel to a smectic layer. Rotations of 
the director n are characteriLed by the azimuthal angle 4. 
The angle q defines the rotation of the hexagon formed by 
the six nearest neighbours of a particle. 
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- z=constant 

Figure 2. Reorientation in a planar film of the smectic I phase. 
The angles 4 and g define the rotation of the director n and 
the hexagon of the bonds, respectively. The axis z is 
perpendicular to the film interfaces, whereas the axis < lies 
on the smectic plane. Deviations from the bookshelf 
geometry are characterized by a non-zero layer tilt angle p. 

angle p. The symmetrical configuration with p = 0 is the 
called bookshelf geometry. 

Theoretical investigations suggest [7] that in a smectic 
C phase a weak hexatic order should also exist as a 
consequence of the coupling between the bond orienta- 
tional order and the molecular tilt. In this case, the results 
obtained below also provide an extension of the conven- 
tional theory for the Freedericksz transition in planar films 
of the smectic C phase. 

A film of a smectic 1 liquid crystal with thickness d has 
the free elastic energy [6] 

2 ~~ d/2 
Fl = 1 1 +“’’ dz[K(V6)’ + L(0q)’ + 2GV4Vql (1) 

where lhe anisotropy of the elastic behaviour is neglected. 
Since the elastic free energy must be positive by definition, 
the elastic constants for director and bond distortions obey 
the conditions K > 0, L > 0 and KL - G2 > 0. 

In the case of smectic layers with a tilt angle p, the free 
electric field energy is represented 141 by 

F r =  -2  dzAt:E2 sin2 0cos2 ~ ( C O S  (4 + &,-cos &)2 

( 2 )  

where Ar: > 0 and q5,, is defined in figure 1. As the dielectric 
anisotropy A & =  el1 - E~ is supposed to be small 
( A E  sin’ 0 E ~ ) ,  the electric field E is approximately 
constant within a distorted sample. Here E I I  and el are the 
dielectric susceptibilities measured parallel and perpen- 
dicular to the director, respectively. Finally, the free 
energy contribution [S] 

’ I +‘I 

( 3 )  

(with h > 0) provides six preferred directions for the 

1 + d‘2 
F3= - ~ h / -  dzcos6(@-q) 

di2 

director due to the hexatic order of the bonds. For an 
equilibrium state of the film, the total free energy 
F = F 1  + F2 + F3 is a minimum. If deviations from the 
equilibrium state occur, the dynamics of the director and 
the bond angle are described by the phenomenological 
equations 

and 

where the conditions 

I 4 ( z  = - d 2 )  = 4(z = + d/2)  = 0 

q(z  = - d/2)  = q(z  = + d /2 )  = 0 
and 

arc satisfied at the boundaries. 

(4) 

2. Instabilities in the case of the bookshelf geometry 

2.1. Threshold voltuge 
For the case that the smectic layers are oriented 

perpendicular to the boundary plates, we insert p = 0 and 
(Po = 7d2 in integral (2). Thus F,  is simplified to 

+ dl2 1 dz A&E2sin2 0 sin2 (p .  (6 )  F 2 =  - 2  -d,? 

The equations of motion (4) are written explicitly 

rl  4 = K& + Gq-: + h cos 6, sin 4 ~- h sin 6(4 -- 11) 

and ( 7 )  

T2q, = G& + Lq:: + Ah sin 6( 4/, - q )  

with the notation b = ACE’ sin’ 0. 
Linearizing (7) we obtain 

r14, = K& + GgIz + b6, - h(4 - q )  
and 

rzqt = G+: + LV:? + h(ct, - q )  

The system (8) of linear differential equations can be 
solved by using an ansatz 

(9) 

where i =  d- 1 .  Then two linear algebraic equations 

( - Kk’ + b - h - i l - I ) q 5 0  - (GP - /I)??,, = 0 

and 
(GP - h)@” + (LP + h + x2)vo = o 

result for q5<, and yo. The system ( 10) can only be solved 
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in those cases where its determinant is equal to zero. This 
condition leads to the dispersion relation 

Tlr2A2 - [r2( - K P  + b - h)  - r l ( L P  + h ) ] i  

- ( - Kk2 + b - h)(LP + h) - ( G P  - h ) 2 = 0  (1 1) 

connecting the rate i of growing or decaying deformations 
with k. According to (9 ) ,  neutral stability is achieved if 
i = 0. Then k satisfies the equation 

( - K P  + b - h)(LP + h)  + (GP - h)2 = 0, (12)  

which reduces to a quadratic equation for P .  Equation (12)  
has two real solutions, * kl and two purely imaginary 
solutions, 2 ik2 (with real k2) .  A general solution of the 
linearized eigenvalue problem (8) with boundary condi- 
tions ( 5 )  is a linear combination of the functions cos klz  
and cosh k2z. The coefficients of this linear combination 
are connected by the equations (lo), which are linear 
dependent as a consequence of the relation (1  2).  Thus we 
choose the second equation and obtain 

1 (f) = A  ( ) cosk lz  + B  ( ) coshk2z (13) 
Rl(kl) R2(k2) 

where 

and 

It can be proved that the boundary conditions ( 5 )  are 
satisfied if 

(14) 

Since kl and k2 are real, the only possible solutions of 
equation (14) are found to be 

cos (kid/2)[Rz(kz) - Ri(ki)]  = 0. 

with integer n and the implication B = 0. According to 
equation (1 2) ,  the bifurcation parameter b has the critical 
value 

(Gk: - h)2 
b,= h + Kk: ~ 

Lk: + h ' 

The lowest value of the instability threshold 6, is 
accompanied with n = 0 ( k l  = d d ) ,  and the threshold 
voltage U, = E,d satisfies the equation 

/ G  hd2I2  1 

-+- 1 K rc2K 1 
Let us consider two borderline cases. If the sample 

thickness d is small, so that hd */n2 6 L, G ,  then formula 
(17) leads to 

(Zr = (1 - g) + ( 1  + z)2(i)2 + 0( (d /d0 )4 )  (18) 

where 

is the threshold voltage for the Freedericksz transition of 
a smectic C film without bond orientation order 
(h=G=O)and  

is a characteristic length. Otherwise, for a rather thick 
sample with hd 2/n2 2+ L, G ,  the threshold voltage ( 1  6 )  
becomes asymptotically 

The elot (Uc/Uo)2 versus (d/do)2 in figure 3 demonstrates 
how the threshold voltage depends on the sample 
thickness. 

2.2. Behaviour slightly above the threshold voltage 
Now the non-linearity of equations (7) are taken into 

account in deciding whether the field induced transition is 
continuous or discontinuous. Using a perturbation pro- 
cedure, the bifurcation type can be predicted by analysing 
the weakly non-linear region above the threshold voltage. 
For this purpose the trigonometric functions in equations 
(7) are expanded in a series up to terms of third order with 
respect to # and y ~ :  

1 K#zz + Gyzz  + bc4 - h ( 4  - V )  = - (b  - bc)#  

These equations can be written as 

where D is a linear differential operator. Taking into 
account the boundary conditions (5 ) ,  it is checked easily 
that D is a self-adjoint operator, and as the cquation 
D& = 0 has the non-trivial solution 

D is singular. According to Freedholm's alternative 191, 
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equation (20 )  may be solved only in those cases where the 
condition 

+ dl2 j dz(fi$I +h$d = 0 (23 )  
- dl2 

is satisfied. Inserting the distortion angles 

and 
- Gk:+ h T(Z 

cos - 
Lk: + h d 

~ ( z ,  t )  = A 

in the expressions for J; and ft the condition (23 )  
immediately leads to the non-linear equation 

dA 
r z = ( h -  b,)A - pA3 ( 2 5 )  

for the distortion amplitude A. where the coefficients are 
defined by 

P = L h  - 9  - (26 )  

r = rl + Rl(k l )* rZ ,  (27 )  

and kl = d d .  If p is positive, the transition to the distorted 
state is a forward bifurcation and distortions grow 
continuously with increasing voltage. After applying 
a voltage, which is a little bit higher than the threshold. a 
small initial distortion A,, grows exponentially 

A(r) = A,exp ( t l z )  (28) 

with the rise time z = T/ (b  - bc). According to equation 
( 2 5 )  the amplitude of the distortions tends to 

(29) 

fort  B z. It should be emphasized that formula (29) is only 
valid in  a region slightly above the threshold h,. If p i s  
negative. hysteresis i s  expected to occur and the time- 
dependent behaviour of the Freedericksz transition is more 
complicated. 

3. Freedericksz threshold voltage in the case of tilted 
smectic layers 

1,et us briefly discuss some modifications of the results 
occurring ifthc \mectic layers are not perpendicular to the 
bounding plates but enclose a non-zero angle p. 
As previously, we assume that the director and the bonds 
are parallel to the wbstrate interfaces. The angle & 
(see figure 2) i s  connected to the layer tilt p by the relation 
cos &, = tan @an 0. Now, imtead of formula (16). the 
linear \(ability analysis leads to 

(kl = n/d). Obviously. the instability threshold 6, is 
increased in comparison to the case p = 0 and & = ? nI2. 
The relations (24) for the deformations remain valid in the 
vicinity of the threshold, but (25) is modified to an 
equation of the type 

dA 
dt r - = [(b - 5,) sin2 4,> cos' p ] A  - PA2 ( 3  1 i 

for the deformation amplitude. This equation describes a 
trans-critical bifurcation, which is usually accompanied 
with hysteresis. Then the experimentally observed insta- 
bility is expected to occur even at a threshold f o r b  which 
IS somewhat lower than the stability limit hC, and the 
discontinuous (first-order) tran\ition leads to a strongly 
distorted state [4]. 

4. Discussion 
Let us  restrict the discussion to a bookshelf 

configuration (,u = 0), since the general conclusions are 
not influenced if the layer tilt angle p is non-zero. Figure 
3 depicts the limits of stability for planar lilms. In the 
region below each curve, the undistorted planar alignment 
is stable with respect to small fluctuations of and PI. 

These curves also define the threshold of the film 
instability if hysteresis effects can be neglected. 

In contrast to a nematic film, the critical voltage for the 
Freedericksz transition depends 011 the film thickness d.  
In figure 3, for several ratios ZJK of the elastic constants. 
it is demonstrated how the threshold voltage depends o n  
the film thickness. If the film thickness is small ( d 6  d,,), 

2 

[%) 

"t 
I 
IF,' 

5- 

L-. _-* - - - . 
0 10 20 30 4 0  5 0  

Figure 3. The square of  the threshold voltage is plotted versus 
the square of the film thickness in dimensionless units for 
several ratios of the elastic constants L and K .  The third 
elastic constant G is assumed to be zero: lJ,, and d) are 
defined in the text. 
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the square of the threshold L': is described by a linear 
function of d 2 .  Then U :  increases with growing d 2 .  For 
a thick sample (d  9 do), U :  tends to a constant value. If the 
bond orientational order is pronounced, as is expected in 
a hexatic smectic I phase, deviations from a constant 
threshold voltage should be clearly observable. Probably, 
the coupling of the molecular tilt to the bonds also 
produces a weak bond orientational order in a smectic C 
phase. In this case, the thickness dependence of the 
threshold voltage should be observable if the sample 
thickness d is comparable to do = zd(K/h) and if the 
elastic constant L is not small in comparison to K .  

There could be a simple way of distinguishing between 
the behaviour of the hexatic smectic I phase and the 
crystal J phase, which is a true crystalline phase with a 
triangular lattice in each layer [ 5 ] .  For a crystalline 
order, the elastic constant L is infinitely high. Inserting 
L/K= M in equation (17), we obtain the formula 
( U,/U,J2 = 1 + (d/d,)2. Accordingly, the threshold voltage 
of a film possessing crystalline ordering always increases 
with growing film thickness, whereas expression (19) 
tends to a constant value if &do + 00. 

It should be noted that the bifurcation analysis cannot 
exclude the existence of a further discontinuous transition 
to a strongly distorted state which does not branch from 
the initial state 4 = q = 0. Considering also strongly 
distorted states by a numerical calculation, Gingras [6] 
found a first order transition, which is mainly based on a 

reorientation cf the bonds. For a certain range of the 
parameter h, this transition has a lower threshold than the 
Freedericksz threshold. Such a discontinuous transition is 
not detectable by the analytical approach presented, since 
the stability is only checked for relatively small deviations 
from the homogeneous film configuration. 
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